Scientists design low-cost sodium-ion battery with cheap electrode materials

Share

An international research team has designed a sodium-ion battery (SIB) storage system based on a P2-type cathode material known as Na0.67Mn0.33Ni0.33Fe0.33O2 and an anode relying on a hard carbon material fabricated from lavender flowers.

The proposed system configuration is intended for low-cost fabrication while ensuring scalability and environmental sustainability, as the two electrode materials are described as “widely accessible” precursors.

“Plant diversity and production capacity are important factors affecting the commercialization of SIBs, as plant-derived hard carbons s are both sustainable and economical,” the researchers explained. “Hard carbon derived from plants preserves the microstructures of the plant tissues, thereby enhancing the penetration of the electrolyte and sodium diffusivity.

The scientists estimated global lavender production at approximately 1,000–1,500 tons annually. However, only a small fraction of this production can be used for electrode materials, as only the flower residue is suitable for conversion into hard carbon.

They also noted that the hard carbon anode and P2-type cathode in the full cell have insufficient sodium reservoirs, leading to poor electrochemical performance. “The present work addresses this gap by evaluating the full-cell performance of P2-Na0.67Mn0.9Ni0.1O2 coupled with lavender flower waste-derived hard carbon under different presodiation approaches,” they further explained.

The scientists used X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy to characterized the SIB system’s cathode and anode and found the cathode has an hexagonal P63/mmc structure, while the anode showed characteristic broad peaks of amorphous carbon.

SEM and TEM revealed, in particular, micrometer-sized cathode grains and a porous hard carbon surface, with EDS and XPS indicated the material has good structural stability. Further analysis also demonstrated that nickel (Ni) incorporation improved the cathode’s structural, electronic, and electrochemical performance.

Moreover, electrochemical testing revealed initial capacities of 200 mAh/g for the cathode and 360 mAh/g for the anode with capacity retentions of 42% and 67.4% after 100 cycles. Overall, Ni doping was found to improve the cathode’s conductivity and stability, and the anode demonstrated good sodium storage performance, supporting strong half-cell and potential full-cell performance, according to the researchers.

“This comprehensive study highlights the potential for developing SIBs with low-cost and sustainable electrode materials,” they concluded. “The optimization of presodiation strategies offers an opportunity for advanced commercial and scalable SIB technologies.”

The system was described in the study “Cost-effective sodium-ion batteries using a Na0.67Mn0.9Ni0.1O2 cathode and lavender-flower-waste-derived hard carbon with a comparative presodiation approach,” published in the Journal of Power Sources. The research team comprised scientists from Turkey’s Inonu University, Istanbul Technical University, Malatya Turgut Ozal University and Aksaray University, as well as from Korea Institute of Science and Technology and Pakistan’s Quaid-i-Azam University, among others. 

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Pre-Budget 2026: Solar and storage industry calls for tax reforms, PLI expansion, and circular economy push
23 January 2026 Ahead of the presentation of the Union Budget 2026–27, stakeholders across India’s solar and energy storage ecosystem have urged the government to foc...