Skip to content

The best battery for grid level energy storage

Share

From pv magazine International

The continued growth of renewables in the global energy mix is inextricably linked to grid level energy storage, which can smooth out the inherent intermittency of solar and wind generation, ensure that generated power is in the right place to meet demand and provide a range of other services to the grid.

While lithium-ion is the best-known storage technology today, a range of different battery technologies offers the potential to provide valuable services to electricity grids around the world, each with its own advantages and disadvantages.

In a new paper, researchers at Tianjin University in China examine these battery technologies, providing a broad perspective on the state of battery technology for grid applications today, and offering a roadmap to guide future studies in this areas. Their findings are published in the paper Battery Technologies for Grid-Level Large-Sale Electrical Energy Storagepublished in Transactions of Tianjin University.

The researchers identify three main roles for batteries to perform at grid level:

  1. Peak shaving & load leveling: To balance gaps in demand.
  2. Voltage and frequency regulation: To achieve a real time balance with non-uniform load on the grid
  3. Emergency energy storage: Providing back up power and preventing outages.

The paper discusses the role of a wide range of existing battery technologies and their ability to provide these services safely and cost effectively, and the challenges that exist for each.

“Battery energy storage technologies with rapid response, low cost, long lifetime, high power, and energy efficiency can be distributed throughout the grid and therefore are desirable for utilization in grid-level electrical energy storage,” say the researchers. “However, some trade-offs often exist among different properties and no existing batteries can meet all the requirements.”

The paper offers analysis of battery technologies including lead-acid, nickel cadmium, nickel metal hydride, sodium-sulfur, lithium-ion and flow batteries of various chemistries.

Three broad conclusions are drawn from this analysis – that research should move in the direction of novel battery systems aimed at meeting all the requirements of grid level energy storage, that cost efficiency requirements mean efforts should focus on batteries based on cheap, abundant materials – such as sodium-ion. And finally, that modelling and comparison between different battery technologies is vital in establishing the best option for a given use case.

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.

Share

Related content

Elsewhere on pv magazine...

Leave a Reply

Please be mindful of our community standards.

Your email address will not be published. Required fields are marked *

By submitting this form you agree to pv magazine using your data for the purposes of publishing your comment.

Your personal data will only be disclosed or otherwise transmitted to third parties for the purposes of spam filtering or if this is necessary for technical maintenance of the website. Any other transfer to third parties will not take place unless this is justified on the basis of applicable data protection regulations or if pv magazine is legally obliged to do so.

You may revoke this consent at any time with effect for the future, in which case your personal data will be deleted immediately. Otherwise, your data will be deleted if pv magazine has processed your request or the purpose of data storage is fulfilled.

Further information on data privacy can be found in our Data Protection Policy.

This website uses cookies to anonymously count visitor numbers. To find out more, please see our Data Protection Policy.

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close